Overview of Proposed NJDEP Stormwater Management Rule

NJSME Continuing Education

June 5, 2019

Stormwater Management Goals

- Mimic existing hydrology
- Reduce proposed peak runoff rates
- Reduce increase in runoff volume
- Promote recharge
- Support stream baseflow
- Mitigate water quality (TSS, nutrients, thermal, etc.)

Inherent Flaws in Current 7:8 LID Stds.

- Non-structural "strategies" are goals, not standards
- Inherently difficult to objectively assess and measure
- Result has been inconsistent and ineffective

OBJECTIVE Alternative? Green Infrastructure

Proposed Green Infrastructure Std.

- GI BMPs must be used to satisfy recharge, quality, and quantity standards
- 3 Tables identifying the performance of each BMP in meeting the 3 standards
 - Water Quality and Recharge BMPs in Table 5-1
 - Quantity BMPs in Tables 5-1 & 5-2
 - If Waiver/Variance granted, Table 5-3 BMPs can also be used for that specific drainage area

Proposed Tiered GI Approach

- 1. Local, Decentralized Green Infrastructure
 - First line of treatment
 - Local recharge
- 2. End of pipe Green Infrastructure
 - Secondary line of treatment
 - Design storm attenuation

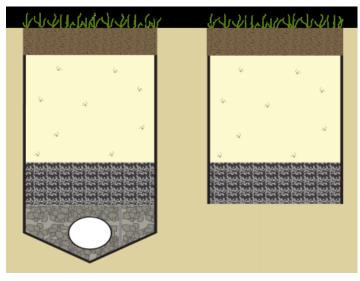
Table 5-1 GI

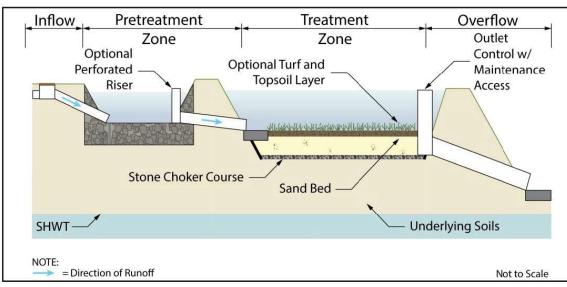
- Decentralized
- Small scale or limited contributory drainage area (1 – 2.5 acres)
- <u>Required</u> for Water Quality and Groundwater Recharge
- Optional for Water Quantity

Table 5-1 – Rain Garden

Table 5-1 – Small Bioretention

Table 5-1 – Parking Bioretention


Table 5-1 – Planters/Bumpouts



Source: Philadelphia Water Dept GSI Tools

Table 5-1 — Sand Filter

Source: NJ BMP Manual Chapter 9.9

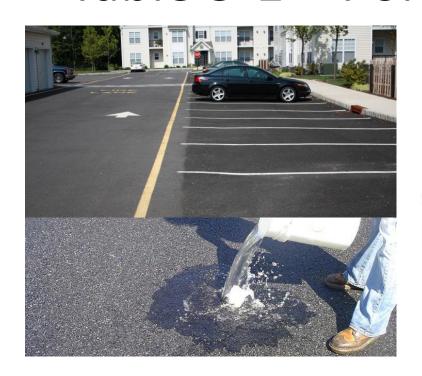
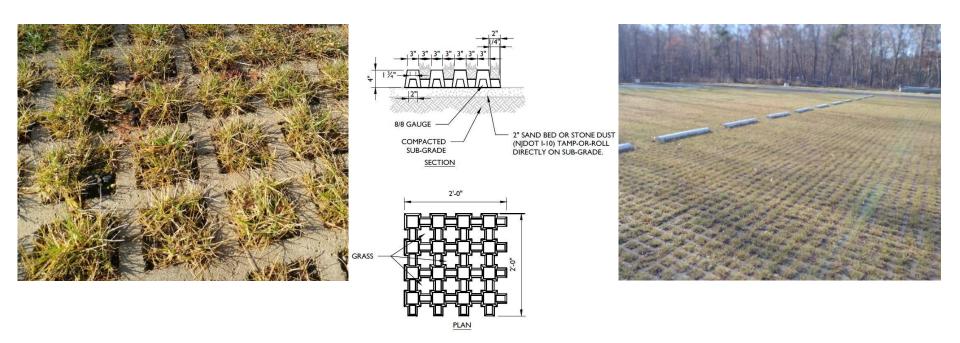


Table 5-1 – Roadside



Table 5-1 – Porous Pavement


TYPICAL POROUS ASPHALT SUBGRADE: CROSS-SECTION

Source: Rutgers Green Infrastructure Guidance Manual

Table 5-1 – Grass Pavers

Table 5-1 – Green Roofs

Table 5-1 – Roof Cistern/Recharge

Table 5-1 – Vegetative Filter Strips

Source: New Jersey Developers' Green Infrastructure Guide Pg. 17

Artificial Turf??

- No fertilizer
- No pesticides
- Excellent infiltration

Forested Bioretention??

Table 5-2 GI

- **Larger** scale
- <u>Unlimited</u> contributory drainage area
- Quantity if Tier 1 not enough
- Seeking to permit for Water Quality when recharge not required
- Not for Recharge

Table 5-2 – Infiltration Basin

Table 5-2 – Subsurface Infiltration

source: www.stormtrap.com

source: http://www.sco-llc.com

Table 5-2 – Constructed Wetlands


Table 5-2 – Large Bioretention

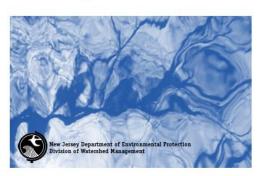
Table 5-2 – Wet Ponds

Table 5-3 – Waiver/Variance

Best Management Practice	Quality TSS removal rate (percent)	Quantity	Recharge	Minimum separation from seasonal high water table (feet)
Blue Roofs	0	Yes	No	N/A
Extended Detention Basins	40-60	Yes	No	1
Manufactured Treatment Device	50 or 80	No	No	Dependent upon the device
Sand Filters	80	Yes	No	1
Subsurface Gravel Wetlands	90	No	No	1
Wet ponds	50-90	Yes	No	N/A

Table 5-3 BMPs may only be used with mitigation

Simultaneous Changes to BMP Manual


- Chapters 5 & 9 to be updated
- Stakeholders working on revised BMPs
- Stakeholders working on revised App E

New Jersey

Stormwater

Best Management Practices Manual

All GI SWM Will "Count"

- Recognize ALL types of GI stormwater management strategies contribute toward LID
- Allow routing with the design infiltration rate
 - BMP App. E design rate (i.e. FOS = 2)
 - Check groundwater mounding
- Non-infiltration Apply reduced curve number method* for <u>ALL</u> design storm events including 100 year *(MD, McCuen, R. MDE, 1983)

"Counting" Infiltration

- Pretreatment Recommended/Req'd 10% of water quality vol or any recognized BMP
- 2D or 3D modeling (In the future)
- Update Appendix E requirements
 - Add/Remove tests
 - Provide more guidance on tests
 - Add testing guidelines for multiple tier 1 BMPs

Reduced Curve Number Method

(McCuen R., MDE, 1983)

$$CN^* = \frac{200}{(P+2Q+2)-\sqrt{5PQ+4Q^2}}$$

$$Q_P = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$
 (Equation 2.3, TR-55, USDA NRCS 1986)

$$S = (1000/RCN) - 10$$
 (Equation 2-4, TR-55)

Reduced Curve Number Method

- Allows GI to be consistently modeled
 - CN* = Adjusted curve number
 - P = Rainfall depth in design storm
 - $-Q = Q_p Q_{GI}$
 - $-Q_p$ = Post development runoff depth
 - $-Q_{GI}$ = Equivalent runoff depth stored in GI (GI volume/tributary area)

Approach

- Small GI will be less sensitive to GW mounding, therefore get most credit for infiltration
- Small GI will have <u>BIGGEST</u> impact
- Seeking NJDEP adoption of forested retention areas to incentivize minimizing LOD

Approach

- Should be part of concept plan process
- Involve ALL disciplines from the beginning
 - Planner
 - Civil Engineer
 - Geotechnical Engineer
 - Landscape Architect

Approach

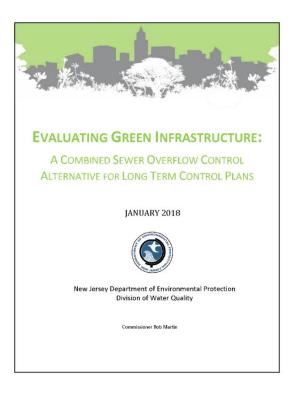
- Map soils as part of concept planning
- Use every "left over" area in layout as a local BMP
- Consider sun exposures in siting BMPs
- Consider viewsheds and multi-function BMPs (e.g. outdoor seating overlooking or intertwined with a BMP)

Municipalities will have 1 Year

- Municipalities are given up to one year to modify their stormwater control ordinances
 - Part IV.A.3.e. NJPDES Tier A municipal separate storm sewer system (MS4) permit
 - Part IV.A.3.d. NJPDES Tier B MS4 permit

Applicants will have 1 Year

- Proposed rule will require a change in the way stormwater systems are designed
- 1 year operative date delay and grandfathering provision will allow projects already substantially designed with existing rules to finish approval process thereby avoiding costly redesign


Engineers will have 1 Year

- NJDEP will need to provide training to both design engineers and review engineers
- 565 municipalities and many more design engineers, the number of individuals requiring training likely exceeds 1,000
- One year will give NJDEP & others the required time to offer training to engineers

NJDEP CSO GI Guidance

- Gl not just for new development
- CSOs will need to implement as well
- https://www.nj.gov/dep/dwq/pdf/CSO Guidance Evaluating
 Green Infrastructure A CSO
 Control Alternative for LTCPs.
 pdf

For Further Information...

http://water.rutgers.edu/Green_Infrastructure_Guidance_ Manual/2015-03-31_Manual.compressed.pdf

https://developersguide.njfuture.org/wpcontent/uploads/2017/10/Developers-Green-Infrastructure-Guide-Aug-2017-web.pdf

Jeromie P. Lange, PE, PP, CME, CFM

732-383-1950

jlange@maserconsulting.com

