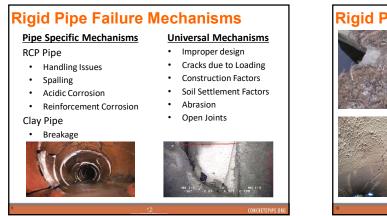
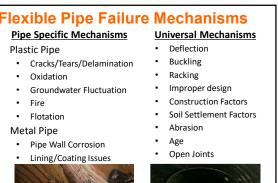
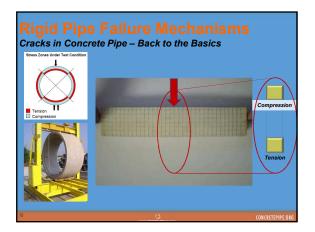


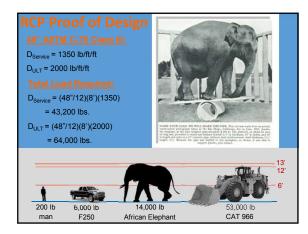
PII - Objectives

- What is "PII"?
- Why is it necessary?
- Pipe Failure Modes
- Inspection Methods
- Inspection Technology
- Inspection Evaluation
- Examples









Inspection Methods

Inspection Methods After Construction Based On:

- Pipeline Access
- Pipe Diameter
- Pipe Material Type
- Anticipated Degradation
- Level of Detail Required

Inspection Timing

- AASHTO Sections 26, 27 & 30
 - PII 30 days after installation
 - Inspect 10% of all pipe installed
- USACE
 - PII 30 days & 365 days after installation
 - Inspect 100% under travel lanes, random 10% otherwise
- AASHTO SOC Guide
 - PII 30 days after installation
 - Inspect 100% of all pipe

Ir	nspection Tech		
	ManualVideo	Visual	
	 Manual Mandrel Laser Profiler / Micrometer 3D Scan 	Structural	
21	InfiltrationExfiltrationIndividual Joint	Leakage	

Visual Inspection

- AASHTO SOC Manual Inspection
 - Manual Inspection Dia Greater than 36"
 - Measurements Taken Every 10'
 - Measure Deflection with 1/16" Metal Tape at 45° locations

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

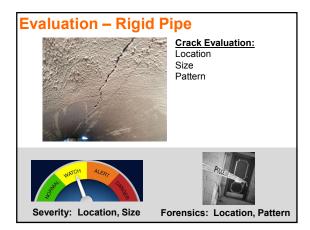
_eakage Inspection

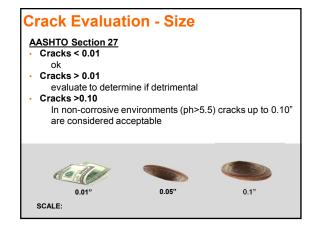
Checks for:

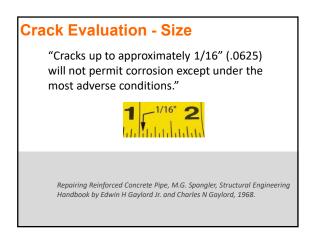
• Joint & Pipe Wall Issues

National Specifications:

- ASTM C969 Infiltration/Exfiltration
 - Infiltration Allowance: 200 gal / in dia / mile / day with 6' of avg head
 - Exfiltration Allowance: 200 gal / in / mile / day with 3' of avg head
- ASTM C1103 Joint Acceptance Testing
- Air Test: If pressure holds or drops < 1psi in 5s
- Water Test: Pressure holds or drops < 1psi in 5s


Pipe Inspection - Evaluation


Pipe Inspection Evaluation:


- Different Pipe Materials:
 - Are Designed Differently
 - Are Installed Differently
 - Are Inspected Differently
 - Should be Evaluated Differently

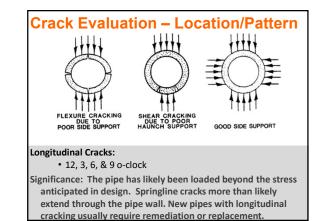
Addressing the Challenges

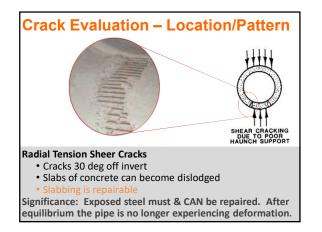
Crack Evaluation - Size

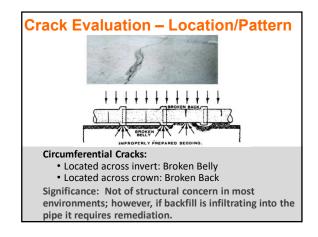
Concrete pipe is designed to handle controlled size cracks.

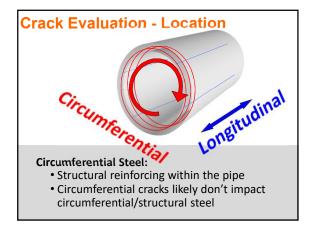
- Cracks ≤ dime: No Concern
- Cracks > dime: Consider Pattern & pH

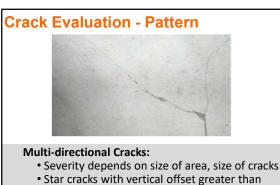



Crack Evaluation - Pattern

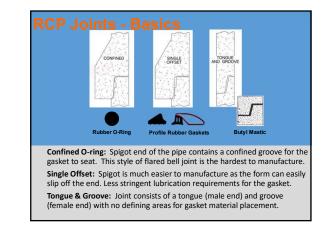

- Random crack
- Longitudinal crack – Radial Tension Sheer
- Circumferential crack
- Multidirectional crack

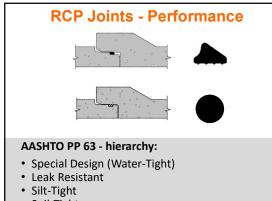



NOT A STRUCTURAL or DURABILITY CONCERN

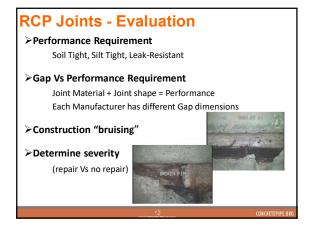


"dime" in acidic areas are candidates for remediation





Additional temporary fill is needed to protect the pipe from construction loads.



Addressing the Challenges

Joints - Installation

- Minimize ALL Pipe Joint Issues:
- Handle with Reasonable Care
- Provide Solid Foundation
- Proper Bedding and Grade
- DO NOT Force on Grade
- Proper Installation of Joint Materials
- Cover Before LOAD Careful with construction Loading!

Pipe Evaluation - Flexible How to evaluate deflection, tears, cracks & buckling

Evaluation – Plastic Pipe FHWA: Degradation of Plastics

Oxidation

- Atmospheric Oxygen reacts with plastic to result in polymer chain scission.
 UV & elevated temperatures accelerate reaction. Antioxidants are added and react with oxygen to deplete sacrificially. One antioxidants are gone, Oxygen attacks the polymers.
- Environmental Stress Cracking
 - Leading factor in polymer cracking and brittle failure. Caused by resin degradation due to chemical exposure while under physical stress.

Ultraviolet Degradation

 UV Radiation results in photo-induced embrittlement and cracking in sunlight. UV Stabilizers are added to absorb radiation and dissipate energy as low level heat.

Evaluation – Plastic Pipe

FHWA: Degradation of Plastics

- Thermal Degradation
 - Decomposition of polymer chains due to exposure to high temperatures. Can reduce strength, stiffness and toughness.
- Chlorine Induced Degradation
 - Under common environmental conditions, polyethylene can be susceptible to degradation due to exposure to chlorine, a common disinfectant. Trace Chlorine can cause oxidative embrittlement and crack initiation.
- Abrasion
- Severity of abrasion is directly related to the particle size, shape and hardness. Bedload is primarily responsible for abrasive action (more than velocity).

Evaluation – Metal Pipe

- Failure Modes
- Corrosion
- Lining delamination
- Abrasion
- Excessive Deformation
- Cracks/fractures/holes
- Inverse Curvature
- Joint Displacement
- Buckling
- Flotation

Evaluation – Plastic Pipe NCHRP: SECTION 4 CONDITION RATING SYSTEM

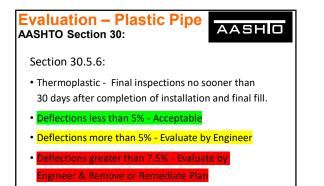
4.9 Plastic Barrel (HDPE, PVC, PP, FRP)

Plastic pipe are often used in both culvert and storm drain applications. Plastic pipe are classified as flexible structures because their design and performance rely on soli-structure interaction; plastic pipes depend upon the soil embedment around the ful point curvaterence and backfill be provide structural stability and support. Plastic pipes and the surrounding soil are designed together. Round-shaped solid or profile wall high density polyethylene (HDPE), polyviny choride (PVC), polytropylene (PD), or thergass arefunced plastic (PRP) are commonly used for culverts and storm drains. Refer to Section 2 for additional information on behavior of flexible pipe.

- Shape
 - Typical allowable maximum dead load service deflection is 5% of the vertical diameter. Greater deflection may be acceptable, but should receive an engineering evaluation.
 - Fair: deflection 5% to 7.5% of vertical diameter
 - Poor: deflection 7.5% to 10% of vertical diameter
 - Critical: deflection greater than 10% of vertical diameter

Evaluation – Plastic Pipe

- Surface Damage
 - Damage such as impacts, creases, cracks and tears can be serious if the distress are extensive and can impair either the integrity of the barrel in ring compression or permit infiltration of groundwater or backfill.
 - Small, localized instances are not ordinarily critical but should be noted along with any indications of the cause.
 - Inspection should document the type, extent and location of all wall distress and photograph significant instances.


Evaluation – Plastic Pipe

• Splitting

- Splitting can occur along plastic welded seams and/or abrupt changes in geometry in the pipe wall or corrugation, or at the bond between the walls and liners in corrugated wall pipe.
- Older HDPE pipes can experience cracking in the corrugated wall liner due to stresses that are residual from the manufacturing process and that may also b in locations that are not structurally significant.
- Photodegradation
 - Plastic pipe is susceptible to UV degradation if not adequately designed or treated to be resistant. Photodegradation is the weakening of the plastic material due to oxidation from absorption of UV radiation. If photodegradation is suspected, pipe wall should be struck with a hammer

	PLASTIC BARREL						
	1	2	3	4	5		
	GOOD	FAIR	POOR	CRITICAL	FAILED		
SHAPE	Barrel maintains round shape with no local wall fattening. Vertical deformation less than 5% of original inside diameter.	Minor wall flattening. Vertical deformation 5%-7.5% of original inside diameter.	Significant wall flattening or increased wall curvature. Vertical deformation 7.5%-10% of original inside clameter. Visual out-of-roundness.	Extreme wall flattening with reversal of curvature (global buckling), and/or kinks. Vertical detormation greater than 10% of original inside diameter. Significant visual out-of- roundness.	Reverse curvature, collapse (complete or partial) or imminent collapse of culvert barrel.		
SURFACE DAMAGE	No indication of wear, abrasion, impact damage or UV degradation.	Minor wear, abrasion, less than 10% of wall thickness. Minor staining or UV degradation. Bistering over less than 25% of pipe inner surface (FRP).	Wear, abrasion that exceeds 10% of wall thickness. UV degradation (pipe ends) causing discoloration. Bistering over greater than 25% of pipe inner surface (FRP).	Wear, abrasion that exceeds 25% of wall thickness. UV degradation (pipe ends) resulting in cracked or broken pipe wall.	Cannot cause failed rating.		
LOCAL BUCKLING, SPLITS, AND CRACKING	Smooth interior wall. No splits in welded seams or cracking in wall.	Initiation of local buckling indicated by rippling in wall. Wall cracking or spills, less than a quarter of circumference. No infiltration. No longitudinal cracking.	Advanced and widespread local wall buckling indicated by extensive interior surface ripping. Wall cracking or spits up to half of circumference. Minor water infiltration Longitudinal cracking less than 12 in. In length.	Kinks though the full wall blockness. Pipe wall buckles inward locally. Wall cracking or spits greater than half of pipe circumference. Longitudinal cracking more than 12 in. in length. Cracks with indication of soll infiltration	Extensive cracking of pipe wall allowing soil infiltration.		

Evaluation – Plastic Pipe NCHRP:

Local Buckling

Bulges in the pipe wall follow an undulating inward-outward pattern along or around the pipe circumference (rippling) should be identified as local buckling. Pipe cross section geometry maintains a circular shape though the wall is significantly weakened and has a reduced vertical load carrying capacity. Changes to the circular shape such as wall-flattening, increasing to reverse curvature, would be evaluated in the shape characteristic as global buckling.

Evaluation – Metal Pipe AASHTO Section 26:

Section 26.5.7:

- CMP Final inspections shall be conducted no sooner than 30 days after completion of installation and final fill.
- CMP Deflection less than 7.5% Acceptable
- Deflection greater than 7.5% Remove & Replace

